Nanoporous polymeric transmission gratings for high-speed humidity sensing.
نویسندگان
چکیده
Nanoporous polymeric transmission gratings are demonstrated to be an excellent platform for high-speed optical humidity sensing. The grating structures were fabricated with a modified holographic, polymer-dispersed liquid crystal (H-PDLC) system. The sensing mechanism was based on changes in the relative transmission associated with the adsorption and desorption of water vapour by nanopores. The spectral changes due to varying humidity levels were measured by a spectrometer and compared with the calculated results based on the coupled wave theory. When the relative humidity (RH) changed from 40% to 95%, the relative transmission at 475 nm increased from 6.3% to 46.6% and that at 702 nm increased from 4% to 64%; these results indicate the sensor's high sensitivity. In addition, the sensor demonstrated excellent reversibility and reproducibility over a large RH range (from 20% to 100% RH). Moreover, the response time of the sensor was measured to be less than 350 ms, making it suitable for many high-speed humidity-sensing applications.
منابع مشابه
Nanoporous Polymeric Grating-based Optical Biosensors (preprint)
This paper demonstrates a label-free biological sensing method usmg nanoporous polymer gratings. The high index modulation (0.07) of the nanoporous polymer grating structure generates a high signal-to-noise ratio, making the structure an ideal label-free biodetection platform. The fabrication process of the nanoporous polymeric grating involves holographic interference patterning and a function...
متن کاملSynthesis, Humidity Sensing, Photocatalytic and Antimicrobial Properties of Thin Film Nanoporous PbWO4-WO3 Nanocomposites
A humidity sensor thin film based on nanoporous PbWO4-WO3 composites has been prepared by spin coating technique with different weight ratio of PbWO4 (Pb) and WO3 (WO) (PWWO-01, PWWO-82, PWWO-64, PWWO-46, PWWO-28, PWWO-01) and their humidity sensing properties have also been investigated at different relative humidity (RH) in the range of 5% - 98% at room temperature with dc resistance. It is f...
متن کاملW-doped nanoporous TiO2 for high performances sensing material toward acetone gas
W-doped TiO2 with nanoporous structure was synthesized by a one-step low temperature hydrothermal method using TiOSO4 and (NH4)6H2W12O40•xH2O as titanium and tungsten sources. Structure, morphology, specific surface area and chemical state of samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). W-doped nanoporo...
متن کاملNanoporous Monolithic Microsphere Arrays Have Anti-Adhesive Properties Independent of Humidity
Bioinspired artificial surfaces with tailored adhesive properties have attracted significant interest. While fibrillar adhesive pads mimicking gecko feet are optimized for strong reversible adhesion, monolithic microsphere arrays mimicking the slippery zone of the pitchers of carnivorous plants of the genus Nepenthes show anti-adhesive properties even against tacky counterpart surfaces. In cont...
متن کاملMolecular Sensing by Nanoporous Crystalline Polymers
Chemical sensors are generally based on the integration of suitable sensitive layers and transducing mechanisms. Although inorganic porous materials can be effective, there is significant interest in the use of polymeric materials because of their easy fabrication process, lower costs and mechanical flexibility. However, porous polymeric absorbents are generally amorphous and hence present poor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanotechnology
دوره 18 46 شماره
صفحات -
تاریخ انتشار 2007